List coloring of complete multipartite graphs

نویسنده

  • Tomás Vetrík
چکیده

The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r−1 partite classes of order two.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on Characterization of Uniquely 3-List Colorable Complete Multipartite Graphs

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K2,2,r r ∈ {4, 5, 6, 7, 8}, K2,3,4, K1∗4,4, K1∗4,5, K1∗5,4. Also, they con...

متن کامل

Choice number of complete multipartite graphs K3*3, 2*(k-5), 1*2 and K4, 3*2, 2*(k-6), 1*3

A graphG is called chromatic-choosable if its choice number is equal to its chromatic number, namely Ch(G) = χ(G). Ohba has conjectured that every graph G satisfying |V (G)| ≤ 2χ(G)+1 is chromatic-choosable. Since each k-chromatic graph is a subgraph of a complete k-partite graph, we see that Ohba’s conjecture is true if and only if it is true for every complete multipartite graph. However, the...

متن کامل

The achromatic indices of the regular complete multipartite graphs

In this paper, we study the achromatic indices of the regular complete multipartite graphs and obtain the following results: (1) A good upper bound for the achromatic index of the regular complete multipartite graph which gives the exact values of an infinite family of graphs and solves a problem posed by Bouchet. (2) An improved Bouchet coloring which gives the achromatic indices of another in...

متن کامل

On-Line Choice Number of Complete Multipartite Graphs: an Algorithmic Approach

This paper studies the on-line choice number of complete multipartite graphs with independence number m. We give a unified strategy for every prescribed m. Our main result leads to several interesting consequences comparable to known results. (1) If k1− m ∑ p=2 ( p2 2 − 3p 2 + 1 ) kp > 0, where kp denotes the number of parts of cardinality p, then G is on-line chromatic-choosable. (2) If |V (G)...

متن کامل

Bipartite Graphs whose Squares are not Chromatic-Choosable

The square G2 of a graph G is the graph defined on V (G) such that two vertices u and v are adjacent in G2 if the distance between u and v in G is at most 2. Let χ(H) and χl(H) be the chromatic number and the list chromatic number of H, respectively. A graph H is called chromatic-choosable if χl(H) = χ(H). It is an interesting problem to find graphs that are chromatic-choosable. Motivated by th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2012